Beyond blindsight: properties of visual relearning in cortically blind fields.
نویسندگان
چکیده
Damage to the primary visual cortex (V1) or its immediate afferents results in a dense scotoma, termed cortical blindness (CB). CB subjects have residual visual abilities, or blindsight, which allow them to detect and sometimes discriminate stimuli with high temporal and low spatial frequency content. Recent work showed that with training, discriminations in the blind field can become more reliable, and even reach consciousness. However, the narrow spatiotemporal bandwidth of blindsight limits its functional usefulness in everyday vision. Here, we asked whether visual training can induce recovery outside the spatiotemporal bandwidth of blindsight. Specifically, could human CB subjects learn to discriminate static, nonflickering stimuli? Can such learning transfer to untrained stimuli and tasks, and does double training with moving and static stimuli provide additional advantages relative to static training alone? We found CB subjects capable of relearning static orientation discriminations following single as well as double training. However, double training with complex, moving stimuli in a separate location was necessary to recover complex motion thresholds at locations trained with static stimuli. Subjects trained on static stimuli alone could only discriminate simple motion. Finally, both groups had approximately equivalent, incomplete recovery of fine orientation and direction discrimination thresholds, as well as contrast sensitivity. These results support two conclusions: (1) from a practical perspective, complex moving stimuli and double training may be superior training tools for inducing visual recovery in CB, and (2) the cortically blind visual system can relearn to perform a wider range of visual discriminations than predicted by blindsight alone.
منابع مشابه
Blindsight, conscious vision, and the role of primary visual cortex.
What is the role the primary visual cortex (V1) in vision? Is it necessary for conscious sight, as indicated by the cortical blindness that results from V1 destruction? Is it even necessary for blindsight, the nonreflexive visual functions that can be evoked with stimuli presented to cortically blind fields? In the context of this controversial issue, I present evidence indicating that not only...
متن کاملIllusory motion perception in blindsight.
Motion detection is typically spared in blindsight, which results from damage to the striate cortex (area V1) of the brain that is sufficient to eliminate conscious visual awareness and severely reduce sensitivity to luminance contrast, especially for high spatial and low temporal frequencies. Here we show that the discrimination of motion direction within cortically blind fields is not attribu...
متن کاملVisual discrimination training improves Humphrey perimetry in chronic cortically induced blindness
OBJECTIVE To assess if visual discrimination training improves performance on visual perimetry tests in chronic stroke patients with visual cortex involvement. METHODS 24-2 and 10-2 Humphrey visual fields were analyzed for 17 chronic cortically blind stroke patients prior to and following visual discrimination training, as well as in 5 untrained, cortically blind controls. Trained patients pr...
متن کاملAbsence of S-cone input in human blindsight following hemispherectomy.
Destruction of the occipital cortex presumably leads to permanent blindness in the contralateral visual field. Residual abilities to respond to visual stimuli in the blind field without consciously experiencing them have, however, been described in cortically blind patients and are termed 'blindsight'. Although the neuronal basis of blindsight remains unknown, possible neuronal correlates have ...
متن کاملVisual stimuli modulate frontal oscillatory rhythms in a cortically blind patient: Evidence for top-down visual processing.
OBJECTIVE We investigated neuronal correlates of faces versus non-faces processing in a cortically blind patient (TN) and a group of healthy age-matched controls in order to test electrophysiological correlates of the processing of pertinent stimuli in this patient. METHODS An EEG paradigm was used, in which intact and scrambled faces were displayed on a screen. First, time-frequency transfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 35 شماره
صفحات -
تاریخ انتشار 2014